
OPTIMAL MANAGEMENT OF WIND POWER
PRODUCTION VIA DISPATCHABLE ENERGY

SOURCES

Bice Di Basilio1

1Department of  Economics, University of  Chieti-Pescara, 65121 Pescara, Italy. Email: bice.dibasilio@unich.it

ABSTRACT

In this paper, a non­linear optimization problem for the optimal
management of wind energy using dispatchable energy sources
(DES) is solved. The model accounts for several aspects such as
a penalty scheme in the wind power underproduction’s case
and the modeling of both electricity prices and wind energy
production. All the quantities involved in the model are
commented and computed through an empirical investigation
based on a supposed wind farm.

Key words: Optimization problem, wind energy, copula
function, electricity prices.

1. INTRODUCTION

Unlike many conventional energy sources, wind energy is highly
unpredictable and uncertain as it depends on uncontrollable external
factors like the weather. Its stochastic nature requires the wind energy
producer (WPP) to manage promptly this uncertainty and, to this end,
several solutions have been developed in the literature. One possibility
for the WPP is to subscribe an insurance contract with a dispatch energy
producer to protect from any energy underproduction (D’Amico, Petroni
and Prattico, 2017). Another chance is constituted by the purchase of
financial derivatives such as the call options. These financial products
give the buyer the right to get the electricity at a fixed strike price instead
of a spot price. Accordingly, the seller (the wind farm), receives in
exchange a premium fee that is the call price (Bidwell, 2005). Finally,
another possibility consists in the storage system based on the
coordination of wind power generation with reserves in form of
dispatchable energy sources like gas, which can be part of the energy
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portfolio of the WPP or can be bought on the market (Collet, F´eron and
Tankov, 2017)­(Heredia, Cuadrado and Corchero, 2018)­(D’Amico, Petroni
and Sobolewski, 2019)­(D’Amico, Di Basilio and Petroni, 2021).

This paper, which is nestled within this last research field, proposes a
methodology to develop optimal coordination strategies of wind energy
with dispatchable energy sources. In particular, it is an extension of the
model already presented in the literature in which, by solving a nonlinear
optimization problem, the optimal quantity of wind energy and DES to be
produced was determined (D’Amico et al., 2021). With the improvement
proposed in this work, it is possible to identify not only the optimal
combination of wind energy and DES to be produced but also the optimal
quantity of energy to be offered on the market. Firstly, it is assumed that
electricity prices follow a Lognormal distribution and therefore that there
are no negative prices. This is reasonable as negative prices are rare and
are the result of temporary market imbalances (Fanone, Gamba and
Prokopczuk, 2013). Secondly, it is supposed that wind power generation
has a mixed discrete­continuous distribution. This hypothesis allows
considering the effects of wind speeds lower than the cut­in speed and of
wind speeds greater than the cut­off speed. Thirdly, it is considered a
penalty in case of underproduction with respect to the quantity to deliver
by contract. Specifically, the penalty is an increasing function of the energy
not supplied (ENS) and it is described by a general power function of
parameter. Finally, a Fairlie­Gumbel­Morgenstern (FGM) copula is used
to shape the dependence between electricity prices and wind energy
production. All these aspects are involved in the definition of the expected
profit function which is maximized under a budget constrain in order to
obtain both the optimal quantity of energy to be produced with DES and
the optimal quantity of energy to deliver.

The rest of the paper is organized as follows: Section 2 displays the
optimization problem and its solutions. Section 3 contains an empirical
analysis of all the quantities involved in the proposed model. Section 4
presents conclusions and future goals.

2. OPTIMIZATION PROBLEM

Generally, electricity markets operation requires that at the present time (t
= 0) the wind energy producer (WPP) proposes a certain amount of energy
K to be placed on for the following period (t = 1). The main feature of these
markets is the sanctioning system whose purpose is to punish operators
providing a quantity of energy different than the promised one. This means
that, if the WPP supplies a quantity of energy other than K, he will suffer a
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loss. Basically, the reason why there are discrepancies between what is
offered at t = 0 and what is actually provided at t = 1 lies in the stochastic
nature of the wind which makes wind energy production uncertain. To
manage this risk and thus avoid penalties, at t = 0 the WPP purchases a
certain amount of dispatchable energy source (DES).

The proposed methodology is an extension of that already presented
in a previous paper in which, by solving a non­linear optimization problem,
the optimal combinations of wind energy and DES to be produced for a
given quantity K was determined (D’Amico et al., 2021). In the model below,
in addition to determining the optimal coordination of wind energy and
DES, it is also possible to detect the optimal quantity of energy K to be
offered on the market at t = 1.

Hypotheses

H1: Let �
e
 be the electricity price at t = 1. At t = 0, this price is a positive and

unknown random variable which is assumed to have a Lognormal
distribution, (�

e
 ~ Lognormal (�, �2) with cumulative distribution function:

ln( )
( ) : [ ] ,

2e e

x
F x x�

��� �� � � � �� ��� �
�

where � is the cumulative distribution function of the standard normal
distribution. The choice of the Lognormal distribution is motivated by
computational reasons since it allows to obtain quasi­explicit solutions of
the optimization problem. However, it should be remarked that in literature
also other distributions, such as the Normal distribution (D’Amico et al.,
2019), the Generalized Pareto distribution (Paraschiv, Hadzi­Mishev and
Keles, 2016) or the Box­Cox

Power Exponential distribution (Bello, Bunn, Reneses and MuÜnoz,
2016), have been used to shape the electricity prices.

Let �
g
 be the cost of producing one unit of energy by DES at t = 0. It is a

non­negative and known quantity.

H2: Let denote by We the quantity of energy produced using wind. It is
a non­negative random variable since its value at t = 1 cannot be known at
t = 0 because of many features (wind speed, wind direction, thermal
stratification, and so on) which have random outcomes at t = 1. According
to the previous literature (D’Amico et al., 2021), it is supposed that We has
a mixed discrete­continuous distribution:

0 if 0
( )

(1 ) ( ) if 0 [0, 1],we

p
F p

a a F p p and a

��
� � � � � ��
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where F(p) is an absolutely continuous cumulative distribution function
(CDF) of a random variable W and a is a point mass at zero, i.e. We ~ a�

0
 + (1

– a)W. The use of a mixed distribution permits regarding also the extreme
cases in which the wind speed is too strong or too weak. In fact, a wind
speed greater than the cut­off speed can damage the rotor of the blade and
as a consequence, the blade is switched to a standstill state. Conversely,
when the wind speed is lower than the cut­in speed, the blade is not able
to rotate and generate power. It should be noted that the random variable
We admits a probability density function:

( )
( ) we

we

F p
f p

p

�
�

�  for all p > 0. (2.1)

Let denote by P
g
 the quantity of energy produced by DES which has to

be optimally determined. It has to belog to closed set [0; K].

Let introduce the energy not supplied (ENS) defined as

ENS := (K – (We + Pg))+ = max(0, K – (We + P
g
)). (2.2)

According to formula (2.2), the WPP offers K on the market and tries to
do this by using both We and P

g
 quantities. If the total production (We + P

g
)

doesn’t achieve K, then there will be an energy not supplied (ENS) and the
WPP will incur a cost of � � 0C  Euros where �C  is a function of ENS, i.e.:

�C  = C � (ENS)� with  > 0, C � 0.

Finally, suppose that if there is an energy production that overcomes
K, it is not sold at the market but it is lost.

H3: Let F
(�e, we)

(x, p) = �[�
e
 � x, We � p] be the joint cumulative distribution

function of the wind power production and energy price at t = 1. Since
these two random variables are not independent, a chance to model their
joint distribution F(�

e
, we)(x; p) is given by a copula function (Durante and

Sempi, 2016). According to the literature (D’Amico et al., 2021)­(D’Amico
et al., 2019), a good choice could be considering a Fairlie­Gumbel­
Morgenstern (FGM) copula applied to the marginal distributions F

we
(p) and

F�e
(x):

F(we, �
e
)(p, x) = C(F

we
(p), F�e

(x)).

The selection of the FGM copula answers the need to have quasi­explicit
calculations of the optimal solutions. It is the only one that is a quadratic
polynomial in u and v

C�(u, v) = uv + �uv(1 – u)(1 – v),  ��� [–1, 1],
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where � is the dependence parameter. If � = 0, then the case of independence
between the two random variables is recovered. From the definition of the
FGM copula is obtained

F
(we, �e)

(p, x) = F
we

(p)F�e
(x)[1 + �(1 – F

we
(p))(1 – F�e

(x))],

and by differentiation for all p > 0 and for all x � 0

f
(we, �e)

(p, x) = f
we

(p)f�e
(x)[1 + �(1 – 2F

we
(p))(1 – 2F�e

(x))],

while for p = 0 and all x � 0 it follows that

f
(we, �e)

(0, x) = ( (0), ( )) ( (0 ), ( )) ( )
e ewe we e

C C
F F x F F x f x

v v
�

� � �
� �� ��� �� �� �

[ ( (0) ( )) ( (0 ) ( ))] ( )
e ee ewe we ewe we

C F F x C F F x f x�
� � �� �� �

= �C
we��e

(F
we

(0)�F�e
(x))f�e

(x)

= �C
we��e

(a�F�e
(x))f�e

(x).

To define the optimization problem, it necessary to introduce the profit
function as the random variable � defined by

� := �
>
 + �

=
,

where

�
>

:= �{We + P
g
 � K}�{We > 0}(�

e
K – �

g
P

g
)

+ �We + P
g
 < K}�{We > 0}[�

e
(We + P

g
) – �

g
P

g

– C(K – (We + P
g
))�], (2.3)

and

�
=

:= �{We = 0}[�
e
P

g
 – �

g
P

g
 – C(K – P

g
)�], (2.4)

where �(A) is the indicator function of event A. Relation (2.3) states that if
the total energy produced (W

e
 + P

g
) is greater than K, then the WPP will

have a revenue from the energy sale of �
e
K and a cost, deriving from the

purchase of P
g
, equal to �

g
P

g
. Conversely, if the total energy produced is

less than K, the WPP has an inflow �
e
(We + P

g
), a cost generated by the

acquisition of energy produced by DES of �
g
P

g
, and a further loss due to

the penalization for the energy not supplied which is equal to C(K – (We +
P

g
)). Relation (2:4) is identical to the relation (2:3) when W

e
 = 0.

Let � be the expected profit function that is a function of both P
g
 and

K variables:

�(P
g
, K) = �[�{We + P

g
 � K}�{We > 0}(�

e
K – �

g
P

g
)]

+ �[�{We + P
g
 < K}�{We > 0}[�

e
(We + P

g
) – �

g
P

g

– C(K – (We + P
g
))�] + �[�{We = 0}[�

e
P

g
 – �

g
P

g
 – C(K – P

g
)�]. (2.5)
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Then, the optimization problem can be formalized as follows:

Maximize �(P
g
, K)

Subject to

h
1
(P

g
, K) = � – P

g
�

g
 � 0,

h
2
(P

g
) = P

g
 � 0,

h
3
(P

g
, K) = K – P

g
 � 0,

h
4
(K) = K � 0, (2.6)

where � is the initial wealth. Noting that inequalities h
1
 and h

3
 assert that

P
g
 � 

g

�
�  and P

g
 � K, it is possible to combine them in a single constraint

introducing A := min ,
g

K
�� �

� ��� �
. As a result, the optimization problem can

be rewrite as:

Maximize �(P
g
, K)

Subject to

h
1
(P

g
, K) = A – P

g
 � 0,

h
2
(P

g
) = P

g
 � 0,

h
3
(K) = K � 0. (2.7)

The constraint h
1
 has a double meaning depending on A whereby if A =

g

�
�  the first bond says that the WPP can buy DES until his initial wealth is

exhausted. Conversely when A = K the interpretation of h
1
 is that the

quantity to put on the market has to be greater or at most equal to the
quantity of DES purchased. The others two constraints, h

2
 and h

3
, guarantee

that the quantity of DES bought and the quantity of energy offered on the
market are greater or equal than zero, respectively.

To solve the optimization problem, it is necessary the introduction of
the Lagrangian function of the problem:

� = �(P
g
, K) + �

1
h

1
(P

g
, K) + �

2
h

2
(P

g
) + �

3
h

3
(K),

where �
1
, �

2
, �

3
 are the Lagrange’s multipliers. The application of Kuhn­

Tucker’s theorem (Sundaram et al., 1996) gives a systems of equations based

on A, where A = min ,
g

K
�� �

� ��� �
.
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Let discuss before the case when K > 
g

�
� , the other case, by similarity

will shortly be discussed at the end of this section.

If K > 
g

�
�  then h

1
(P

g
) = 

g

�
�  – P

g
 and the application Kuhn­Tucker’s’s

theorem leads to the following system of equations:

gP

�
�
�

= ( 1) 1

0
( )( ( )) ( )

gK P

we g gC f p K p P dp aC K P
� �� ��� �� � � � � �� ��

0
( ) [ ] [ 0] (1 )

gK P

we e e gf p We p dp a We a
�� �� � � � � � � � �� �� � �

– �
1
 + �

2
 = 0

K

�
�
�

= 
1

3( ) [ ] [ ]
g

we e g
K P

f p We p dp Ca K P
�� ��

�
� � � � � � �� �

1

0
( ) [ ] 0,

gK P

we gf p C k p P dp
� ��� � � � �� (2.8)

1

�
��
�

= 1( ) 0,g g

g

h P P
�

� � �
�

2

�
��
�

= h
2
(P

g
) = P

g
 � 0

3

�
��
�

= h
3
(P

g
) = P

g
 � 0

�
1
��0, �

2
 ��0, �

3
 ��0, 1 g

g

P
�� �� �� ��� �

 = 0, �
2
P

g
 = 0, �

3
K�= 0.

The solution of system (2.8) passes through the consideration of six
different cases:

• CASE I.1: P
g
 = 0, �

1
 = 0 and �

3
 = 0;

• CASE I.2: P
g
 = 0, �

1
 = 0 and K = 0;

• CASE I.3: �
2
 = 0, P

g
 = A = 

g

�
�  and �

3
 = 0;

• CASE I.4: �
1
 = �

2
 = �

3
 = 0;

• CASE I.5: �
1
 = �

2
 = 0 and K = 0;

• CASE I.6: �
2
 = 0, P

g
 = A and K = 0.
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Now let pay attention to three cases in which K � 0 that are the most
interesting to be considered because if K = 0, the WPP does not participate
in the production of energy neither with wind nor with DES.

2.1. Case  I.1

P
g
 = 0, �

1
 = 0 and �

3
 = 0

The first case, CASE I.1, is for P
g
 = 0, �

1
 = 0, �

3
 = 0. Thus, replacing these

values to the first equation of system (2.8) it is obtained

0
(1 ) ( ) [ ] [ 0]

K

g we e ef p We p dp a We�� �� � � � � � �� � �

1 1

0
( ) ( ) ( ) 0.

K

weaC K f p C K p dp�� ��� � � � � �� (2.9)

From the second equation it is recovered
1 1

0
( ) ( ) [ ] ( ) ( ) ,

K

we e weK
Ca K f p We p dp f p C K p dp

���� ��� � � � � � �� �� (2.10)

that can be substituted in formula (2.9) and, after remarking that �
2
 > 0, it is

achieved

0
( ) [ ] [ 0] [ ]

.
1 1

we e e
e

g

f p We p dp a We E

a a

��
� � � � � �

� � �
� �

� � �

In this situation it is not optimal to use gas (in fact P
g
 = 0) if the price of

gas (�
g
) is greater than the expected price of electricity divided by (1 + a).

Accordingly, the optimal solution suggests using only wind power so that
P

g
 = 0. The optimal quantity of energy to plan to produce in the next period

can be found numerically using the second equation of system (2.8), which,
after the substitution P

g
 = 0 can be rewritten as follows,

( ) [ ] ( ) [ ]we e we eK
K f p We p dp Kf K We K

K

��� � �� � � � �� �� � � �

0
( ) [ ) [ ] 0.

K

wef p C K p dp aCK
K K

� �� �� �� � � �� �� �� (2.11)

It is possible to note that the quantity

0
( ) [ ) [ ] ,

K

wef p C K p dp aCK
K K

� �� �� �� � �� �� �� (2.12)

is the total marginal penalization considering production of energy both
with wind and without wind. Whereas the quantity

0
( ) [ ] ,we eK f p We p dp

K

��� � �� �� �� � � (2.13)

is the marginal revenue in case of overproduction.
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2.2. Case I.3

�
2
 = 0, P

g
 = A = 

g

�
�  and �

3
 = 0

Another solution of system (2.8) arises when �
2
 = 0, P

g
 = A = 

g

�
� , �

3
 = 0.

Applying these conditions to the first and second equations of the system
(2.8) and using similar arguments as those exposed in the former case it is
obtained:

[ ]
.

1
e

g

E

a

�
� �

�
In this case it is optimal produce the maximum with gas because the

price of gas is lower than 
[ ]

.
1

eE

a

�
�

 Again K is determined numerically

compared to the quantity (K – P
g
), where P

g
 = 

g

�
� , by solving with respect

to K the following equation:

1

g

Ca K
���� �� �� ��� �

=  3( ) [ ]
g

we
K

f p We p dp
��

�
�
�

� �� �

1

0
( )g

K

we

g

f p C K p dp
����

� �� �� � � �� ��� �
� (2.14)

2.3. Case I.4

�
1
 = �

2
 = �

3
 = 0

The last non trivial solution for the system (2.8) is for �
1
 = �

2
 = �

3
 = 0. First,

it is necessary to substituite �
1
 = �

2
 = �

3
 = 0 into system (2.8). Then, from the

second equation of the system, it is obtained

Ca�(K – P
g
)�–1 = ( ) [ ]

g
we e

K P
f p We p dp

��

�
� �� �

1

0
( ) ( ) ,

gK P

we gf p C K p P dp
� ��� � � �� (2.15)

that can be substituted into the first equation of system (2.8). Simple
algebraic calculations give

�
g

= 0
( ) [ ] [ 0]

,
1

we e ef p We p dp a We

a

��
� � � � �

�
� � �
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In other words

�
g

= 
[ ]

.
1

eE

a

�
�

Equation (2.15) shows a dependence only on the difference between K
and P

g
 thus it is convenient to introduce a new variable � = K – P

g
. In this

way, it is possible to solve numerically equation (2.15) with respect to �
and get an optimal value �. Consequently infinite combinations of P

g
 and K

that gives �*, i.e. K = P
g
 + �*, are available. This reveals that, whenever �

1
 = �

2

= �
3
 = 0, it is possible to determine P

g
 according to previous results (D’Amico

et al., 2021) and then, compute K such that K = P
g
 + �*. In Figure 2, it is

provided a graphical illustration to better understand this interpretation.
The blue line shows all of the optimal combinations of K and P

g
 while

points A and B describe two different scenarios. In detail, point B describes,
for a fixed level of P

g
, the situation in which the energy offered on the

market is too low and it is appropriate to increase this offer up to the blue
line. Viceversa point A displays the situation in which the quantity of energy
provided is too high and it is beneficial to decrease it until the optimal line
because it is expected a lower total power production that, with an excessive
offer, will generate a penalty.

Now let briefly discuss the scenario in which K < 
g

�
� . The relativee

system of equations is similar to system (2.8). The only difference is in the
second equation in which it is necessary to add the term �

1
, obtaining:

K

�
�
�

= 
1

3( ) [ ] [ ]
g

we e g
K P

f p We p dp Ca K P
�� ��

�
� � � � � � �� �

1
10

( ) [ ] 0.
gK P

we gf p C K p P dp
� ��� � � � � � ��

Also in this system of equations it is appropriate to consider only the
cases in which K � 0. It is obtained that the case in which P

g
, �

1
 and �

3
 are

equal zero, and the case in which �
1
, �

2
 and �

3
 are equal zero, lead to the

same result and interpretation of CASE I.1 and CASE I.4 respectively. It is
achieved a different result for the case in which �

2
, �

3
 are equal zero and P

g

= K compared to the case �
2
, �

3
 equal zero and P

g
 = 

g

�
�  (CASE I.3). In

particular it is attained that, if �
g
 < 

[ 0]

1
e We

a

� � �
�

�
, the WPP will use only

gas �K < 
g

�
� .
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3. EMPIRICAL FEATURES OF THE MODEL

The advanced model requires all the involved quantities to be set
operationally. To this purpose, it is applied to a hypothetical wind farm of
48 MW rated power which consists of 24 independent wind turbines.
Consequently, the total wind farm production is given by multiplying the
number of turbines with the unitary wind power production. The choice
of independent wind turbines is carried out only to simplify the
investigation. In fact, in a real scenario, many aspects can induce correlation
between turbines such as shear effects and ground geomorphological
structures.

Specifically, wind data have been downloaded from NASA’s MERRA­
2 database (https://gmao.gsfc.nasa.gov/reanalysis/MERRA­2) and then,
converted into wind energy using a power curve.

This trasformation is carried out assuming for each turbine:

• Geographical coordinates­ 39:5 N (latitude) and 8:75 E (longitude),

• Hub height­95 m,

• Rated power­ 2 MW,

• Cut­in wind speed­13 m/s,

• Cut­out wind speed­25 m/s,

• Rated wind speed­13 m/s,

Figure 1: Graphic illustration of the solution obtained for 
1
 = 

2
 = 

3
 = 0 with

P
g
 and K as control variables
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Electricity prices data have been downloaded from Borsa Elettrica
Italiana (https://www.mercatoelettrico.com). Both series have hourly
resolution and refer to the period 2008­2018.

The unit of energy produced is MWh while the unit of electricity prices
is €/MWh.

According to the literature (D’Amico et al., 2021), it is assumed that the
wind power production has a mixed discrete­continuous distribution with
the following cdf:

� �
0 if 0

( )

(1 ) 1 if 0, [0, 1].
pwe

p

F p

a a e p a

�
� ��� ��� �

��
�� �
� � � � � ��

where F
we

(p) has a Weibull distribution for his continuous part, i.e. in the
interval (0, +�), and a is a point mass at zero. As for the electricity price, it
is used a Lognormal distribution for computational reasons (D’Amico et
al., 2021). By Matlab software, it is possible to estimate all the parameters
of the selected distributions. In detail, the parameters � and � of the Weibull
distribution are computed using the function ’fitdist’ and their estimated
values are equal to 11.91 and 0.800 with corresponding 95% confidence
interval [11:79, 12:03] and [0:795, 0:805]. The point mass at zero a is the
parameter of a Bernoulli variable thus, it is determined as the ratio between
the number of null wind power production events and the total number of
observations. Its value is equal to 0.26 and it is within the corresponding
95%­confidence interval of [0:24, 0:28]. Also the parameters  and  of the
Lognormal distribution are estimated using the function ’fitdist’ and are
equal to 4.034 e/MWh and 0.719 e/ MWh with respective 95%­confidence
intervals of [4.029, 4.038] and [0.715, 0.723].

Figure 2 shows a comparison between the empirical cumulative
distribution of positive wind energy production data and the theoretical
Weibull distribution. Similarly, Figure 3 compares the empirical cumulative
distribution of electricity prices data and the theoretical Lognormal
distribution.

In general, it is difficult to fix a value for the parameters � and C because
they depend on the specific signed contract. For example, it could be
reasonable to set C equal to the average electricity price which, in this
application, is equal to 64.563 €/MWh. Regarding the parameter �, it is
required a more careful analysis as it plays a fundamental role in the penalty
scheme. In fact, it should be avoided values of � in the interval (0, 1) because
they penalize marginally the smaller deviations from the target more than
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the large deviations. A good choice could be the use of values greater than
1 that allow to adequately penalize greater deviations from the target, more
than smaller ones.

Finally, the correlation � between the electricity prices and wind power
production is negative and equal to –0.0544. This result is in line with the
selection of the FGM copula as it is able to manage only correlations in the

range 
1 1

, .
3 3

� ��� �� �
 Consequently, the parameter  is equal –0.1631 as � = � × 3

(Durante and Sempi, 2016)­(Bekrizadeh, Parham and Zadkarmi, 2012).

4. CONCLUSION

The methodology proposed in this paper, which is an improvement of that
already presented in literature (D’Amico et al., 2021), develops optimal
strategies for wind energy management. By solving a non­linear
optimization problem with a budget constrain, the optimal quantity of wind
energy to be produced using dispatchable energy sources P

g
 and the optimal

quantity of energy K to be offered on the market are detected.

The model considers P
g
 and K as control variables and determines the

optimal policies according to the initial wealth endowment, the
unpredictable production of wind energy, the electricity prices, the penalty
system, and their inter­dependencies.

All the quantities involved in the model have been commented and
concretely identified through an empirical investigation conducted on a
supposed wind farm.

Figure 2: Empirical and theoretical CDF of wind energy production
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Obviously the model leaves space for new possible extensions. Firstly,
it could be expanding to a multi­period scenario in which optimal policies
are repeatedly determined. Secondly, the possibility of borrowing money
to grow the initial endowment could be introduced. Thirdly, the
distributions belonging to the Extreme Value Theory class could be used
to model extreme variations in both electricity prices and the speed of
energy.

References

Bekrizadeh, H., Parham, G. A. and Zadkarmi, M. R. (2012). The new generalization of
farlie–gumbel–morgenstern copulas, Applied Mathematical Sciences 6(71): 3527–3533.

Bello, A., Bunn, D., Reneses, J. and MuÜnoz, A. (2016). Parametric density recalibration
of a fundamental market model to forecast electricity prices, Energies 9(11): 959.

Bidwell, M. (2005). Reliability options: A market­oriented approach to long­term
adequacy, The Electricity Journal 18(5): 11–25.

Collet, J., F´eron, O. and Tankov, P. (2017). Optimal management of a wind power
plant with storage capacity, Forecasting and Risk Management for Renewable Energy,
Springer, pp. 229–246.

D’Amico, G., Di Basilio, B. and Petroni, F. (2021). Hedging the risk of wind power
production using dispatchable energy source, Stochastics and Quality Control 36(1):
1–20.

D’Amico, G., Petroni, F. and Prattico, F. (2017). Insuring wind energy production, Physica
A: Statistical Mechanics and its Applications 467: 542–553.

D’Amico, G., Petroni, F. and Sobolewski, R. A. (2019). Optimal control of a dispatchable
energy source for wind energy management, Stochastics and Quality Control 34(1):
19–34.

Figure 3: Empirical and theoretical CDF of electricity prices



Optimal Management of Wind Power Production Via Dispatchable Energy Sources 27

Durante, F. and Sempi, C. (2016). Principles of copula theory, Vol. 474, CRC press Boca
Raton, FL.

Fanone, E., Gamba, A. and Prokopczuk, M. (2013). The case of negative day­ahead
electricity prices, Energy Economics 35: 22–34.

Heredia, F.­J., Cuadrado, M. D. and Corchero, C. (2018). On optimal participation in
the electricity markets of wind power plants with battery energy storage systems,
Computers and Operations Research 96: 316–329.

Paraschiv, F., Hadzi­Mishev, R. and Keles, D. (2016). Extreme value theory for heavy
tails in electricity prices, Journal of Energy Markets 9(2).

Sundaram, R. K. et al. (1996). A first course in optimization theory, Cambridge university
press.




